首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4788篇
  免费   364篇
  国内免费   951篇
  2024年   4篇
  2023年   60篇
  2022年   79篇
  2021年   98篇
  2020年   124篇
  2019年   134篇
  2018年   143篇
  2017年   168篇
  2016年   167篇
  2015年   182篇
  2014年   207篇
  2013年   249篇
  2012年   162篇
  2011年   223篇
  2010年   175篇
  2009年   282篇
  2008年   287篇
  2007年   294篇
  2006年   264篇
  2005年   242篇
  2004年   185篇
  2003年   194篇
  2002年   151篇
  2001年   151篇
  2000年   140篇
  1999年   132篇
  1998年   138篇
  1997年   123篇
  1996年   111篇
  1995年   122篇
  1994年   92篇
  1993年   137篇
  1992年   106篇
  1991年   97篇
  1990年   94篇
  1989年   72篇
  1988年   56篇
  1987年   74篇
  1986年   72篇
  1985年   53篇
  1984年   61篇
  1983年   21篇
  1982年   50篇
  1981年   27篇
  1980年   40篇
  1979年   24篇
  1978年   17篇
  1977年   12篇
  1976年   4篇
  1970年   1篇
排序方式: 共有6103条查询结果,搜索用时 15 毫秒
991.
We compared above-ground allocation patterns in mature shrubs of Banksia hookeriana from three 13-year-old populations, growing on nutrient-impoverished sands to determine whether C (dry mass) could be a substitute for mineral nutrients (N, P, K, Ca, Mg and NA). The percentage of reproductive structures to total above-ground growth (reproductive effort; RE) was integrated over nine successive reproductive cycles. Only 0.5% of above-ground dry mass was allocated to seeds compared with 31% to total RE. Allocations of N (24%) and P (48%) to seeds, and N (44%) and P (65%) to RE were much higher. Allocations of K, Ca, Mg and Na to seeds (<1–3%), and RE (21–35%) were closer to that of dry mass. Relative allocation (RA) is defined as the proportion of a nutrient element allocated to a structure relative to its dry mass. RA of P to seeds was 91 and N was 44, but for K, Ca, Mg and Na ranged from only 6 for K to<1 for Na. Thus P, and to a lesser extent N, provide a much more sensitive measure of the relative cost of reproduction than C in this nutrient-limited system.  相似文献   
992.
In short-season soybean production areas, low soil temperature is the major factor limiting plant growth and yield. The decreases in soybean yield at low temperatures are mainly due to nitrogen limitation. Genistein, the most effective plant-to-bacterium signal in the soybean (Glycine max (L.) Merr.) nitrogen fixation symbiosis, was used to pretreat Bradyrhizobium japonicum. We have previously reported that this increased soybean nodulation and nitrogen fixation in growth chamber studies. Two field experiments were conducted on two adjacent sites in 1994 to determine whether the incubation of B. japonicum with genistein, prior to application as an inoculant, or genistein, without B. japonicum, applied onto seeds in the furrow at the time of planting, increased soybean grain yield and protein yield in short season areas. The results of these experiments indicated that genistein-preincubated bradyrhizobia increased the grain yield and protein yield of AC Bravor, the later maturing of the two cultivars tested. Genistein without B. japonicum, applied onto seeds in the furrow at the time of planting also increased both grain and protein yield by stimulation of native soil B. japonicum. Interactions existed between genistein application and soybean cultivars, and indicated that the cultivar with the greatest yield potential responded more to genistein addition.  相似文献   
993.
Yearly and seasonal (rainy and dry seasons) variations of CH4 emission from a Sumatra paddy field were measured for 3 years. The mean CH4 emission rates during the growth period were in the range of 16.0–26.1 mg CH4 m-2 h-1 for the chemical fertilizer plots and 23.3–34.9 mg CH4 m-2 h-1 for the plots with rice straw application, respectively. The increase in the amounts of CH4 emission by rice straw application were from 1.3 to 1.6 times. There was no significant difference in the mean CH4 emission rates between rainy and dry seasons.Total amounts of CH4 emitted during the period of rice growth were in the ranges of 29.5–48.2 and 43.0–64.6 g CH4 m-2 for the plots applied with chemical fertilizer and those with rice straw application, respectively. Nearly the same amounts of CH4 were emitted in the first and second half of the growth period, irrespective of rice straw application.  相似文献   
994.
995.
Molecular markers associated with seed weight in two soybean populations   总被引:10,自引:0,他引:10  
Seed weight (SW) is a component of soybean, Glycine max (L.) Merr., seed yield, as well as an important trait for food-type soybeans. Two soybean populations, 120 F4-derived lines of YoungxPI416937 (Pop1) and 111 F2-derived lines of PI97100xCoker 237 (Pop2), were mapped with RFLP makers to identify quantitative trait loci (QTLs) conditioning SW across environments and populations. The genetic map of Pop1 consisted of 155 loci covering 973 cM, whereas Pop2 involved 153 loci and covered 1600 cM of map distance. For Pop1, the phenotypic data were collected from Plains, GA., Windblow, N.C., and Plymouth, N.C., in 1994. For Pop2, data were collected from Athens, GA., in 1994 and 1995, and Blackville, S.C., in 1995. Based on single-factor analysis of variance (ANOVA), seven and nine independent loci were associated with SW in Pop1 and Pop2, respectively. Together the loci explained 73% of the variability in SW in Pop1 and 74% in Pop2. Transgressive segregation occurred among the progeny in both populations. The marker loci associated with SW were highly consistent across environments and years. Two QTLs on linkage group (LG) F and K were located at similar genomic regions in both populations. The high consistency of QTLs across environments indicates that effective marker-assisted selection is feasible for soybean SW.  相似文献   
996.
The oxygen flash yield (YO2) and photochemical yield of PS II (PS II) were simultaneously detected in intact Chlorella cells on a bare platinum oxygen rate electrode. The two yields were measured as a function of background irradiance in the steady-state and following a transition from light to darkness. During steady-state illumination at moderate irradiance levels, YO2 and PS II followed each other, suggesting a close coupling between the oxidation of water and QA reduction (Falkowski et al. (1988) Biochim. Biophys. Acta 933: 432–443). Following a light-to-dark transition, however, the relationship between QA reduction and the fraction of PS II reaction centers capable of evolving O2 became temporarily uncoupled. PS II recovered to the preillumination levels within 5–10 s, while the YO2 required up to 60 s to recover under aerobic conditions. The recovery of YO2 was independent of the redox state of QA, but was accompanied by a 30% increase in the functional absorption cross-section of PS II (PS II). The hysteresis between YO2 and the reduction of QA during the light-to-dark transition was dependent upon the reduction level of the plastoquinone pool and does not appear to be due to a direct radiative charge back-reaction, but rather is a consequence of a transient cyclic electron flow around PS II. The cycle is engaged in vivo only when the plastoquinone pool is reduced. Hence, the plastoquinone pool can act as a clutch that disconnects the oxygen evolution from photochemical charge separation in PS II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting enzyme (agents) - Chl chlorophyll - cyt cytochrome - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FO minimum fluorescence yield in the dark-adapted state - FI minimum fluorescence yield under ambient irradiance or during transition from the light-adapted state - FM maximum fluorescence yield in the dark-adapted state - FM maximum fluorescence yield under ambient irradiance or during transition from light-adapted state - FV, FV variable fluorescence (FV=FM–FO ; FV=FM–FI) - FRR fast repetition rate (fluorometer) - PS II quantum yield of QA reduction (PS II=(FM – FO)/FM or PS II)=(FM= – FI=)/FM=) - LHCII Chl a/b light harvesting complexes of Photosystem II - OEC oxygen evolving complex of PS II - P680 reaction center chlorophyll of PS II - PQ plastoquinone - POH2 plastoquinol - PS I Photosystem I - PS II Photosystem II - RC II reaction centers of Photosystem II - PS II the effective absorption cross-section of PHotosystem II - TL thermoluminescence - YO2 oxygen flash yield The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   
997.
We conducted three experiments to examine the influence of ultraviolet-B radiation (UV-B; 280–320 nm) exposure on reproduction in Brassica rapa (Brassicaceae). Plants were grown in a greenhouse under three biologically effective UV-B levels that simulated either an ambient stratospheric ozone level (control), 16% (“low enhanced”), or 32% (“high enhanced”) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment, we examined whether UV-B level during plant growth influenced in vivo pollen production and viability, and flower production. Pollen production and viability per flower were reduced by ≈50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollen was reduced under high-enhanced UV-B to 17% of that of ambient controls. Whole-plant production of viable pollen was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, we collected pollen from plants under the three UV-B levels and examined whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B treatments had initially lower germination and viability than pollen from the ambient level. After in vitro exposure to the high-enhanced UV-B levels for 6 h, viability of the pollen from plants grown under ambient UV-B was reduced from 65 to 18%. In contrast, viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from ≈43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B exposure. In the third experiment, we used pollen collected from source plants under the three UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa.  相似文献   
998.
Fifty-eight homologous protein sequences from the completely sequenced chloroplast genomes ofZea mays, Oryza sativa, Nicotiana tabacum, Pinus thunbergii, Marchantia polymorpha andPoryphyra purpurea were investigated. Analyzed individually, only 40 of the 58 proteins gave the true, known topology for these species. Trees constructed from the concatenated 14295 amino acid alignment and from automatically generated subsets of the data containing successively fewer polymorphisms were used to estimate theNicotiana-Zea andPinus-angiosperm divergence times as 160 and 348 million years, respectively, with an uncertainty of about 10%. These estimates based upon phylogenetic analysis of protein data from complete chloroplast genomes are in much better accordance with current interpretations of fossil evidence than previous molecular estimates.This paper is dedicated to emer. Univ.-Prof. DrFriedrich Ehrendorfer on the occasion of his 70th birthday.  相似文献   
999.
Skotodormant seeds of Lactuca sativa Grand Rapids imbibed in darkness for 10 days (10-day DS) germinated poorly upon terminal treatment with red light (R) or gibberellin A3 (GA3). Soluble sugars in the imbibition solutions influenced the depth of skotodormancy. Ten-day DS seeds, imbibed in 50–500 mm sucrose or 100–500 mm glucose and given terminal GA3 germinated completely and germinated about 80% when imbibed in 100 mm galactose, mannose, lactose, or maltose. In contrast, terminal R applied to 10-day DS seeds caused only 20–50% germination. If given R at day 0 and imbibed for 10 days in darkness in 500 mm sucrose or glucose, seeds washed free of exogenous glucose or sucrose then germinated about 50% in darkness in water. These seeds responded to terminal R or GA3 with complete germination. When seeds were given FR at day 0, germination responses following terminal R or GA3 were significantly lower when the duration of DS was increased from 7–10 day DS to 15 days. In 10-day DS seeds given initial FR and imbibed in either solutions of 50 or 100 mm sucrose and KNO3, either terminal R or GA3 treatment gave complete or near complete germination. It is concluded that seed exposure to certain soluble sugars and/or nitrate during a 10-day DS protected certain substrates and thereby extended the sensitivity of the seeds to terminal R or GA3 treatment. The study provides substantial evidence for nonhormonal factors associated with light and GA action in the control of seed skotodormancy. Received October 30, 1996; accepted April 22, 1997  相似文献   
1000.
Foraging for light: photosensory ecology and agricultural implications   总被引:9,自引:3,他引:6  
This mini-review is concerned with one of the facets of the sensory physiology of plants that, in the last decade, has been intensively studied using genetically altered plants and eco-physiological techniques – the perception of the proximity of neighbouring plants through specific informational photoreceptors. We focus on the signalling mechanisms that allow individual shoots to ‘forage’ for light in patchy and highly dynamic canopy environments. We present evidence from recent experiments suggesting that the fitness of each individual plant in the population, the growth of the population as a whole, and the degree of growth inequality among neighbours are all strongly dependent on the timing and precision of foraging mechanisms controlled, at least partially, by phytochrome-B-like phytochromes. This evidence is discussed in the context of potential impacts on yield of agricultural crops resulting from the artificial alteration of plant sensitivity to proximity photo-signals. Directed overexpression of phytochrome genes appears to be an interesting avenue to explore in order to alter the photomorphogenesis of specific organs (or developmental stages) without affecting the overall ability of the plants to forage for light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号